By Jared Gilmour

McClatchy Washington Bureau

When it comes to a neighborhood’s political leanings, look no further than the cars or pickups on the street.

Researchers at Stanford University used a computer algorithm to sift through 50 million Google Street View images from 200 cities across the U.S. — and what they found was that cars are a shockingly good predictor of whether a neighborhood votes Republican or Democratic.

In neighborhoods with more sedans than extended-cab pickup trucks, there’s an 88 percent chance voters picked a Democrat at the polls, researchers said. And the opposite was true as well, the study found: In neighborhoods where pickups outnumber sedans, there’s an 82 percent chance an individual precinct went Republican.

The election data researchers looked at was from the 2008 presidential race between Barack Obama and John McCain, researchers said. The research was published Nov. 28 in the Proceedings of the National Academy of Sciences.

“Using easily obtainable visual data, we can learn so much about our communities,” Fei-Fei Li, director of the Stanford Artificial Intelligence Lab and the Stanford Vision Lab, where the research was done, said in a statement.

Li added that what can be gleaned from cheap or publicly available data is often “on par with some information that takes billions of dollars to obtain via census surveys.”

And while Li’s team may not have paid millions for their data, it did take a lot of work to train computers to comb through millions and millions of images, catalog which car was which and then associate the cars with demographic data about the area — and finally, to link that data to the area’s political leanings, researchers said.

Researchers spent two weeks training the algorithm to go through the roughly 22 million cars that were pictured in 50 million Google Street View images. Then, computers were able to file each into one of nearly 3,000 categories — broken down by make, model, and year, researchers said.