Jellyfish inspire DNA chains that snag roving cancer cells

Los Angeles Times /

LOS ANGELES — Jellyfish have inspired ideas for bird-safe wind turbines and artificial hearts. Now a team of researchers has drawn insight from a jellyfish’s tentacles to design a better way to capture dangerous cancer cells roving through the bloodstream.

Cancer cells are often most threatening when they break off from their original site and start invading other parts of the body, a process called metastasis. To find out if that’s happening in a patient, doctors often look for them in a sample of blood.

A study published last week in Proceedings of the National Academy of Sciences looked to nature for a solution to this intractable problem. Senior author Jeffrey Karp, a bioengineer at Brigham and Women’s Hospital, and colleagues at the Massachusetts Institute of Technology and Harvard University thought about the way marine animals like jellyfish and sea cucumbers use long tentacles or arms with sticky patches to snag tiny prey out of the water.

Thus inspired, they designed a device with long chains of DNA made out of aptamers — repeating, “sticky” blocks of DNA — specially made to latch on to a protein called tyrosine kinase 7, which is found in certain leukemia cells as well as in lung and colon cancers. The researchers also cut the flow surface into a herringbone pattern, which made any cancer cells more likely to get snared by the DNA tentacles.